Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling.
نویسندگان
چکیده
Glial tumor necrosis factor-α (TNFα) is essential for scaling up of synapses during prolonged activity blockade, but whether TNFα is an instructive or permissive signal is not known. Here we show in rat cortical neurons that the effects of TNFα and activity blockade are not additive; whereas TNFα increased AMPA quantal amplitude at control synapses, TNFα reduced quantal amplitude at prescaled synapses, demonstrating state-dependent effects of TNFα signaling on the scaling process. Whereas synaptic scaling during prolonged activity blockade [24 h tetrodotoxin (TTX)] was prevented by blocking TNFα signaling, early scaling (6 h TTX) was not, unless TNFα signaling was first blocked for 24 h. Moreover, when synapses were prescaled, prolonged (24 h) but not brief (6 h) blockade of TNFα signaling reversed scaling. Finally, prolonged block of TNFα signaling modified the synaptic localization of several scaffold proteins, suggesting that maintenance of postsynaptic density composition is TNFα dependent. Together, these data suggest that TNFα is not an instructive signal for scaling but rather is critical for maintaining synapses in a plastic state in which synaptic scaling can be expressed.
منابع مشابه
Isolation and Characterization of Novel Phage Displayed scFv Fragment for Human Tumor Necrosis Factor Alpha and Molecular Docking Analysis of Their Interactions
Tumor necrosis factor alpha (TNF-α) expression amplifies to excess amounts in several disorders such as rheumatoid arthritis and psoriasis. Although, Anti-TNF biologics have revolutionized the treatment of these autoimmune diseases, formation of anti-drug antibodies (ADA) has dramatically affected their use. The next generation antibodies (e.g. Fab, scFv) have not only reduced resulted immunoge...
متن کاملIsolation and Characterization of Novel Phage Displayed scFv Fragment for Human Tumor Necrosis Factor Alpha and Molecular Docking Analysis of Their Interactions
Tumor necrosis factor alpha (TNF-α) expression amplifies to excess amounts in several disorders such as rheumatoid arthritis and psoriasis. Although, Anti-TNF biologics have revolutionized the treatment of these autoimmune diseases, formation of anti-drug antibodies (ADA) has dramatically affected their use. The next generation antibodies (e.g. Fab, scFv) have not only reduced resulted immunoge...
متن کاملGrowth factors in synaptic function
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth ...
متن کاملThere's More Than One Way to Scale a Synapse
TNFalpha has been proposed to underlie synaptic scaling, but the mechanism and functional significance of this remain unclear. In this issue of Neuron, Cingolani et al. demonstrate that TNFalpha can mediate scaling through the regulation of beta3 integrins. Kaneko et al. show that TNFalpha-dependent synaptic scaling plays an important role in visual cortical plasticity.
متن کاملTargeting tumor necrosis factor-α in hypoxia and synaptic signaling
Tumor necrosis factor (TNF)-α is a proinflammatory cytokine, which is synthesised and released in the brain by astrocytes, microglia and neurons in response to numerous internal and external stimuli. It is involved in many physiological and pathophysiological processes such as gene transcription, cell proliferation, apoptosis, synaptic signalling and neuroprotection. The complex actions of TNF-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 44 شماره
صفحات -
تاریخ انتشار 2010